NODE
bnode_core.ode.node.node_architecture
Neural ODE (NODE) Architecture Module.
This module implements a Neural Ordinary Differential Equation (NODE) architecture for modeling dynamical systems. NODE directly learns the differential equations governing a system's evolution by parameterizing the derivative function with neural networks. Specifically, this module learns a State-Space representation of the system dynamics:
Attention
This documentation is AI written and may contain inaccuracies. Please verify the details before use.
Overview
Neural ODEs represent a continuous-depth neural network where the hidden state evolves according to a learned ODE:
dx/dt = f_θ(x, u, p, t)
Where
- x: System states
- u: Control inputs (optional)
- p: System parameters (optional)
- t: Time
- f_θ: Neural network parameterized by θ
Outputs are generated an optional output network:
y = g_φ(x, u, p, t)
Where
- y: System outputs/measurements
- g_φ: Neural network parameterized by φ
Architecture Components
-
NeuralODEFunc: Learns the state derivative function f_θ
- Input: Current states, controls (optional), parameters (optional)
- Output: State derivatives dx/dt
- Uses normalization for numerical stability
-
OutputNetwork: Maps states to observable outputs (optional)
- Input: States, controls (optional), parameters (optional)
- Output: System outputs/measurements
- Decouples internal dynamics from observations
-
NeuralODE: Main model combining ODE solver and output network
- Integrates state derivatives using torchdiffeq solvers
- Supports both training and inference modes
- Includes pre-training on derivatives and main training with ODE solver
Key Features
- Continuous-time modeling: No discretization artifacts
- Variable time step: Can predict at arbitrary time points
- Flexible: Supports controls, parameters, and outputs
- Normalized: Built-in normalization for numerical stability
Training Modes
-
Pre-training Mode:
- Trains on state derivatives directly (if available in dataset, could construct these numerically, e.g. by finite differences)
- Fast initial parameter estimation
- No ODE solver required
- Loss: ||dx/dt - f_θ(x, u, p)||²
-
Main Training Mode:
- Integrates ODE from initial conditions
- Uses torchdiffeq solvers (Euler, RK4, dopri5, etc.)
- More accurate but slower
- Loss: ||x(t) - ∫f_θ(x, u, p)dt||²
Supported Solvers
See torchdiffeq documentation.
NeuralODEFunc
Bases: Module
Neural network function representing ODE right-hand side f_θ(x, u, p).
This module learns the state derivative function for a dynamical system:
dx/dt = f_θ(x, u, p)
The network includes normalization layers for numerical stability and supports optional control inputs and system parameters.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
states_dim
|
int
|
Dimension of state vector x. |
required |
controls_dim
|
int
|
Dimension of control input vector u. Default: 0. |
0
|
parameters_dim
|
int
|
Dimension of parameter vector p. Default: 0. |
0
|
hidden_dim
|
int
|
Hidden layer dimension. Default: 20. |
20
|
n_layers
|
int
|
Number of layers (minimum 2). Default: 3. |
3
|
activation
|
Module
|
Activation function class. Default: nn.ELU. |
ELU
|
intialization
|
str
|
Weight initialization method ('identity', 'xavier', 'kaiming', 'orthogonal'). Default: 'identity'. |
'identity'
|
Attributes:
| Name | Type | Description |
|---|---|---|
states_dim |
int
|
Dimension of states. |
controls_dim |
int
|
Dimension of controls. |
parameters_dim |
int
|
Dimension of parameters. |
include_controls |
bool
|
Whether controls are used. |
include_parameters |
bool
|
Whether parameters are used. |
normalization_states |
NormalizationLayer1D
|
Normalizes input states. |
normalization_states_der |
NormalizationLayer1D
|
Normalizes output derivatives. |
normalization_controls |
NormalizationLayer1D
|
Normalizes control inputs. |
normalization_parameters |
NormalizationLayer1D
|
Normalizes parameters. |
system_nn |
Sequential
|
Neural network for derivative function. |
Forward Args:
states (torch.Tensor): State tensor of shape [batch_size, states_dim].
parameters (torch.Tensor, optional): Parameters [batch_size, parameters_dim].
controls (torch.Tensor, optional): Controls [batch_size, controls_dim].
Returns:
| Type | Description |
|---|---|
|
Tuple of (states_der, states_der_norm): - states_der (torch.Tensor): Denormalized state derivatives [batch_size, states_dim] - states_der_norm (torch.Tensor): Normalized state derivatives [batch_size, states_dim] |
Raises:
| Type | Description |
|---|---|
AssertionError
|
If normalization layers of states_der are not initialized before forward pass. If no pre-training is done, this normalization layer must not be initialized. |
Source code in src/bnode_core/ode/node/node_architecture.py
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 | |
OutputNetwork
Bases: Module
Neural network mapping states to observable outputs.
This module learns the observation function that maps internal states to measurable outputs: y = g_θ(x, u, p)
Useful when system states are not directly observable or when outputs represent derived quantities.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
states_dim
|
int
|
Dimension of state vector x. |
required |
outputs_dim
|
int
|
Dimension of output vector y. |
required |
controls_dim
|
int
|
Dimension of control inputs. Default: 0. |
0
|
parameters_dim
|
int
|
Dimension of parameters. Default: 0. |
0
|
controls_to_output
|
bool
|
Whether to include controls in output mapping. Default: False. |
False
|
hidden_dim
|
int
|
Hidden layer dimension. Default: 20. |
20
|
n_layers
|
int
|
Number of layers (minimum 2). Default: 3. |
3
|
activation
|
Module
|
Activation function. Default: nn.ELU. |
ELU
|
intialization
|
str
|
Weight initialization method. Default: 'identity'. |
'identity'
|
Attributes:
| Name | Type | Description |
|---|---|---|
states_dim |
int
|
Dimension of states. |
outputs_dim |
int
|
Dimension of outputs. |
controls_dim |
int
|
Dimension of controls (0 if not used). |
parameters_dim |
int
|
Dimension of parameters. |
include_parameters |
bool
|
Whether parameters are used. |
controls_to_output |
bool
|
Whether controls feed into output network. |
normalization_states |
NormalizationLayer1D
|
Normalizes states. |
normalization_controls |
NormalizationLayer1D
|
Normalizes controls. |
normalization_parameters |
NormalizationLayer1D
|
Normalizes parameters. |
normalization_outputs |
NormalizationLayer1D
|
Normalizes outputs. |
output_nn |
Sequential
|
Neural network for output mapping. |
Forward Args
states (torch.Tensor): States [batch_size, states_dim]. parameters (torch.Tensor, optional): Parameters [batch_size, parameters_dim]. controls (torch.Tensor, optional): Controls [batch_size, controls_dim].
Returns:
| Type | Description |
|---|---|
|
Tuple of (outputs, outputs_norm): - outputs (torch.Tensor): Denormalized outputs [batch_size, outputs_dim] - outputs_norm (torch.Tensor): Normalized outputs [batch_size, outputs_dim] |
Raises:
| Type | Description |
|---|---|
AssertionError
|
If normalization of outputs are not initialized before forward pass. |
Source code in src/bnode_core/ode/node/node_architecture.py
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 | |
NeuralODE
Bases: Module
Complete Neural ODE model for dynamical system learning.
Main class that combines the ODE function, output network, and ODE solver for training and inference on continuous-time dynamical systems.
The model learns
dx/dt = f_θ(x, u, p) (ODE function) y = g_φ(x, u, p) (Output function, optional)
And integrates: x(t) = x(t₀) + ∫[t₀,t] f_θ(x(τ), u(τ), p) dτ
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
states_dim
|
int
|
Dimension of state vector x. |
required |
controls_dim
|
int
|
Dimension of control inputs u. Default: 0. |
0
|
parameters_dim
|
int
|
Dimension of parameters p. Default: 0. |
0
|
outputs_dim
|
int
|
Dimension of outputs y. Default: 0. |
0
|
controls_to_output_nn
|
bool
|
Include controls in output mapping. Default: False. |
False
|
hidden_dim
|
int
|
Hidden dimension for ODE network. Default: 20. |
20
|
n_layers
|
int
|
Layers in ODE network. Default: 3. |
3
|
hidden_dim_output_nn
|
int
|
Hidden dimension for output network. Default: 20. |
20
|
n_layers_output_nn
|
int
|
Layers in output network. Default: 2. |
2
|
activation
|
Module
|
Activation function. Default: nn.ELU. |
ELU
|
intialization
|
str
|
Initialization for output network. Default: 'identity'. |
'identity'
|
initialization_ode
|
str
|
Initialization for ODE network. Default: 'identity'. |
'identity'
|
Attributes:
| Name | Type | Description |
|---|---|---|
include_controls |
bool
|
Whether model uses controls. |
include_parameters |
bool
|
Whether model uses parameters. |
include_outputs |
bool
|
Whether model has output network. |
ode_fun_count |
int
|
Counter for ODE function evaluations. |
NeuralODEFunc |
NeuralODEFunc
|
ODE right-hand side function. |
OutputNetwork |
OutputNetwork
|
Output mapping network (if outputs_dim > 0). |
current_controls |
Tensor
|
Controls for current integration. |
current_times |
Tensor
|
Time points for current integration. |
current_parameters |
Tensor
|
Parameters for current integration. |
Methods:
| Name | Description |
|---|---|
normalization_init |
Initialize normalization from HDF5 dataset. |
forward |
Forward pass. |
set_input |
Set inputs for ODE integration. |
forward_ODE |
ODE function compatible with torchdiffeq. |
model_and_loss_evaluation |
Compute loss for training/testing. |
get_progress_string |
Format training progress string. |
save |
Save model checkpoint. |
load |
Load model checkpoint. |
Training Modes
Pre-training (pre_training=True): - Uses state derivatives directly from data - Bypasses ODE solver for fast training - Loss: ||dx/dt - f_θ(x)||² + ||y - g_φ(x)||² - Requires 'states_der' in dataset
Main training (pre_training=False): - Integrates ODE from initial conditions - Uses torchdiffeq solver (Euler, RK4, dopri5, etc.) - Loss: ||x(t) - x̂(t)||² + ||y(t) - ŷ(t)||² - More accurate but computationally expensive
Loss Components
- loss_states: MSE between true and predicted states (normalized)
- loss_outputs: MSE between true and predicted outputs (normalized)
- loss_states_der: MSE for state derivatives (pre-training only)
- rmse_states: RMSE for states (main training only)
- rmse_outputs: RMSE for outputs (main training only)
Notes
- Normalization must be initialized before any forward pass
- Adjoint method saves memory but may be slower for small models
- Control interpolation uses nearest-neighbor for robustness
- ODE function counter tracks solver efficiency
- All tensors use normalized values internally for stability
See Also
NeuralODEFunc: ODE right-hand side networkOutputNetwork: Output mapping networkbnode_core.ode.trainer: Training pipelinetorchdiffeq.odeint: ODE solver
Source code in src/bnode_core/ode/node/node_architecture.py
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 | |